Tg Temperatura de Transición vítrea
Laboratorio > ► Ensayos Termicos
Temperatura de Transición vítrea (Tg)
La transición vítrea, Tg, es la transición térmica más importante que muestran los polímeros amorfos. Como la transición vítrea es un fenómeno del estado no cristalino, se deduce que es un evento menos dramático en los polímeros semicristalinos. Antes de que se pueda seleccionar un polímero amorfo, o incluso semicristalino, para una tarea particular, es esencial conocer la temperatura de transición vítrea, ya que el cambio de módulo en la región de Tg es comúnmente de aproximadamente tres órdenes de magnitud. A temperaturas por debajo de la Tg, el polímero está en su estado vítreo. Aquí las cadenas están en conformaciones esencialmente congeladas. Puede haber algunos movimientos localizados, pero no hay un movimiento segmentario concertado a gran escala porque la rotación alrededor de los enlaces de la columna vertebral está muy restringida. En los polímeros, los enlaces intramoleculares se deben a enlaces de valencia primarios (covalentes) mientras que las atracciones intermoleculares generalmente se deben a fuerzas de enlace secundarias. Las fuerzas intermoleculares se oponen a la agitación térmica, que induce vibración, rotación y traslación de un sistema molecular. Existen vibraciones atómicas en todos los niveles de temperatura. La estabilidad del sistema molecular depende de la energía de vibración de los enlaces químicos. En los polímeros, la degradación térmica ocurre cuando la energía de la vibración excede la unión primaria entre los átomos, mientras que los fenómenos de transición asociados con el punto de fusión cristalino, la temperatura de transición vítrea y las deformaciones del polímero están relacionadas con la rotación y la vibración de las cadenas moleculares.
¿Qué significa Tg?
Se define como la temperatura a la cual el polímero o elastomero adquiere propiedades características de estado vítreo como fragilidad , rigidez y rigidez (al enfriarse). Esta temperatura (medida en °C) depende de la estructura química del polímero y por lo tanto, puede usarse para identificar polímero o elastomero. Es la temperatura en el cual un polímero cambia de un estado rígido y quebradizo a otro blando y maleable, está presente sólo en polímeros amorfos y es diferente para cada polímero, este la temperatura de transición se conoce como temperatura de la transición vítrea (Tg). La transición vítrea es una propiedad típica de la porción amorfa de un sólido semicristalino. Los polímeros amorfos solo exhiben una Tg, los polímeros cristalinos exhiben una Tm (temperatura de fusión) y típicamente una Tg ya que generalmente también hay una porción amorfa (semi-cristalinas). El valor de Tg depende de la movilidad de la cadena de polímero.
La transición del vidrio al estado similar al caucho es una característica importante del comportamiento del polímero o elastomero, que marca una región de cambios dramáticos en las propiedades físicas, como la dureza y la elasticidad. En Tg, se observan principalmente cambios en la dureza, el volumen, el porcentaje de alargamiento para romperse y el módulo de sólidos de Young. Algunos polímeros se usan por debajo de su Tg (en estado vítreo) como el poliestireno, el poli (metacrilato de metilo), etc., que son duros y quebradizos. Sus Tgs son más altas que la temperatura ambiente. Mientre algunos polímeros se utilizan por encima de su Tg (en estado gomoso), por ejemplo, elastómeros de caucho como el poliisopreno, el poliisobutileno. Son suaves y flexibles en la naturaleza; sus Tg son inferiores a la temperatura ambiente.
A bajas temperaturas, las regiones en las que el polímero es amorfo se encuentran en estado vítreo y las moléculas tienen poca movilidad ya que el único movimiento permitido es un movimiento vibratorio débil y, por lo tanto, el polímero es duro, rígido y frágil. Si el polímero se calienta, cuando alcanza la temperatura de transición vítrea, las moléculas pueden comenzar a moverse y, por lo tanto, el polímero está gomoso y muestra suavidad y flexibilidad. Las transiciones deben considerarse como el efecto de la excitación, debido al aumento de la temperatura, de los movimientos vibratorios o rotacionales de los átomos, grupos atómicos y segmentos de cadena.
La información más importante que proporciona la Tg
El estado normal de la mayoría de los polímeros termoestables es ser un sólido amorfo a temperatura ambiente. La disposición de las moléculas de polímero es una disposición aleatoria, lo que significa que la estructura del polímero no tiene una disposición repetitiva de cadenas de polímero. Un sólido amorfo es diferente de un sólido cristalino donde las moléculas de polímero estarían en una disposición estructurada y repetitiva. A temperaturas inferiores a la Tg, las cadenas moleculares no tienen suficiente energía presente para permitirles moverse. Las moléculas de polímero están esencialmente bloqueadas en una estructura amorfa rígida debido a la corta longitud de la cadena, a los grupos moleculares que se ramifican fuera de la cadena y se entrelazan entre sí, o debido a una estructura rígida del esqueleto. Cuando se aplica calor, las moléculas de polímero ganan algo de energía y pueden comenzar a moverse. En algún momento, la energía térmica es suficiente para cambiar la estructura rígida amorfa a una estructura flexible. Las moléculas de polímero se mueven libremente una alrededor de la otra. Este punto de transición se llama temperatura de transición vítrea.
La Tg se acompaña de un cambio en la capacidad calorífica del material. El polímero no se funde (a diferencia de un polímero cristalino que se fundirá cuando se aplica calor), pero experimenta un cambio en la estructura (de rígido a flexible) que produce un cambio en la capacidad calorífica del material.
Tg / Tm ≅ 1/2 para polímeros simétricos (por ejemplo, cloruro de poliviniliden - PDVC)
Tg / Tm ≅ 2/3 para polímeros no simétricos (por ejemplo, polipropileno - PP)
Elastómeros completamente amorfos con baja Tg (Tg ≤ - 40 ÷ 50°C), termoplásticos semicristalinos o amorfos con Tg ≅ -10 ÷ 120°C y Tm = 120 ÷ 260°C y finalmente la urea-melamina, fenol termoendurecible. formaldehído completamente amorfo.
Determinación de la transición del vidrio
Según las propiedades de los polímeros. especialmente los polímeros amorfos, cambian drásticamente en la región de transición, hay muchas formas de determinar la Tg experimentalmente basándose en cambios en las propiedades termodinámicas, físicas, mecánicas o eléctricas en función de la temperatura.
a) Dilatometría: en este método se construye una gráfica de volumen específico versus temperatura. Hay un cambio de pendiente en la transición vítrea.
b) Métodos térmicos: el método principal aquí es la calorimetría diferencial de barrido, DSC. La técnica es sensible a las transiciones exotérmicas y endotérmicas y a los cambios en la capacidad calorífica, como ocurre en la transición vítrea. Se ha demostrado que una modificación reciente de DSC, calorimetría de barrido diferencial de temperatura modulada, M-TDSC, es mucho más sensible a la transición vítrea que la DSC convencional.
c) Técnicas mecánicas: además del módulo, otras propiedades relacionadas como la dureza y el coeficiente de restitución pueden formar la base de las técnicas de detección de Tg. Sin embargo, el análisis térmico mecánico dinámico, DMTA, es con mucho la técnica más importante en esta categoría. Se aplica un desplazamiento periódico a la probeta. Las ondas de tensión y deformación periódicas resultantes se pueden analizar para obtener el módulo de almacenamiento dinámico (una medida de la energía almacenada por ciclo), el módulo de pérdida dinámica (una medida de la energía disipada como calor por ciclo) y la tangente de la salida ángulo de fase, tan delta. Esta es una técnica conveniente, de amplia aplicación y sensible para la detección de Tg. Debido a la naturaleza viscoelástica de los polímeros en la región de transición vítrea, los cambios en la frecuencia del experimento darán como resultado un cambio de la posición de Tg.
La naturaleza química de un polímero es la responsable principal de los cambios en Tg. La humedad, peso molecular y estructura son algunos de los tantos factores a considerar en este rango de análisis. La simetría en las unidades respectivas favorecen el aumento de rigidez a temperaturas menores a Tg, por otra parte los materiales asimétricos o desordenados (con un alto contenido de enlaces polares) tienden a reblandecerse a temperaturas más altas de Tg.
El uso de un polímero por encima de su Tg depende de las propiedades que se necesitan para el polímero. Una silicona flexible o epoxi tiene su Tg por debajo de 0°C. Se puede usar a temperatura ambiente y superior porque la propiedad deseada es flexibilidad y elasticidad. Por encima de la Tg, el polímero está en estado gomoso. Para una silicona flexible o epoxi, es decir si se usa como sellador o adhesivo flexible, la capacidad de moverse a medida que se aplican tensiones es una característica clave que solo se logra si la temperatura de servicio es superior a la Tg.
Es posible que otro polímero necesite tener propiedades físicas fuertes cuando se usa a una temperatura elevada. Para este polímero, la temperatura de servicio debe estar por debajo de la Tg. Este polímero se encuentra en estado rígido y vítreo cuando se usa a una temperatura inferior a la Tg. Esto significa que el polímero tiene una alta resistencia en áreas tales como compresión, tensión, cizallamiento, etc.
Teorías de la temperatura de transición del vidrio
La naturaleza fundamental de la transición vítrea aún no está clara. Es un proceso complejo que involucra factores de equilibrio, termodinámicos y cinéticos. Las diversas teorías de la transición vítrea, sin embargo, han utilizado el enfoque termodinámico o cinético. El enfoque termodinámico se basa en consideraciones de entropía del estado vítreo, mientras que la teoría cinética de la transición vítrea considera los fenómenos de relajación asociados con la transición vítrea. Cada enfoque solo da una explicación parcial del comportamiento observado de los polímeros. Ahora discutimos brevemente estas teorías junto con la teoría del volumen libre.
Teoría cinética
El concepto cinético de transición vítrea considera la transición vítrea como un fenómeno dinámico ya que la posición de la Tg depende de la velocidad de calentamiento o enfriamiento. Predice que el valor de Tg medido depende de la escala de tiempo del experimento en relación con el de los movimientos moleculares que surgen de la perturbación del sistema polimérico por los cambios de temperatura. Se han propuesto varios modelos para correlacionar estos movimientos moleculares con cambios en las propiedades macroscópicas observadas en el experimento.
Un enfoque considera el proceso de vitrificación (glassification) como una reacción que implica el movimiento de segmentos de cadena (unidades cinéticas) entre estados de energía. Para que ocurra el movimiento de un segmento de cadena de un estado de energía a otro, debe estar disponible un "agujero" crítico o un espacio vacío. Para crear este agujero, debe haber suficiente energía disponible para superar las fuerzas cohesivas de las moléculas circundantes y la barrera de energía potencial asociada con la reorganización. La temperatura a la que el número de agujeros de tamaño suficiente es lo suficientemente grande como para permitir que el flujo se considere como la Tg. Esta teoría permite una descripción del enfoque del equilibrio termodinámico. Cuando un material polimérico por encima de Tg es enfriado, hay suficiente movimiento molecular para lograr el equilibrio. Sin embargo, la velocidad de aproximación al equilibrio, y por lo tanto la Tg, depende de la velocidad de enfriamiento empleada en el experimento.
Teoría del equilibrio
El concepto de equilibrio trata la transición vítrea ideal como una verdadera transición termodinámica de segundo orden, que tiene propiedades de equilibrio. El estado ideal, por supuesto, no se puede obtener experimentalmente ya que su realización requeriría un tiempo infinito. Según alguien el proceso de transición vítrea es consecuencia de los cambios en la entropía conformacional con los cambios de temperatura. El nivel reducido en la reorganización molecular observado cerca de la temperatura de transición se atribuye a la reducción en el número de conformaciones disponibles a medida que disminuye la temperatura. La entropía conformacional de equilibrio se convierte en cero cuando finalmente se alcanza una transición termodinámica de segundo orden. Acto seguido, las conformaciones están esencialmente "congeladas" ya que el tiempo requerido para los cambios conformacionales se vuelve prácticamente infinito. La temperatura de transición vítrea, Tg, por lo tanto, se aproxima a la verdadera temperatura de transición a medida que la escala de tiempo del experimento se hace más larga. Basado en este razonamiento y utilizando un tratamiento de termodinámica estadística que utiliza una teoría de cuasi reticular, algunos desarrollarò predicciones cuantitativas de la transición de fase de segundo orden que están de acuerdo con el experimento.
Flexibilidad de la cadena
La flexibilidad de la cadena está determinada por la facilidad con la que se produce la rotación en los enlaces de valencia primarios. Los polímeros con baja impedancia de rotación interna tienen valores bajos de Tg. Los grupos alifáticos de cadena larga (enlaces éter y éster) aumentan la flexibilidad de la cadena, mientras que los grupos rígidos, como las estructuras cíclicas, endurecen la columna vertebral. Los grupos laterales voluminosos que son rígidos y cercanos a la columna causan un obstáculo estérico, reducen la movilidad de la cadena y, por lo tanto, aumentan la Tg. La influencia del grupo lateral en la mejora de la rigidez de la cadena depende de la flexibilidad del grupo y no de su tamaño. De hecho, los grupos laterales que son bastante flexibles tienen poco efecto dentro de cada serie; en cambio, las cadenas de polímeros son forzadas aún más. Esto aumenta el volumen libre y, en consecuencia, la Tg disminuye.
Factores geométricos
Factores geométricos, como la simetría de la columna y la presencia de dobles enlaces en la cadena principal, influyen en Tg. Los polímeros que tienen una estructura simétrica tienen una Tg más baja que aquellos con estructuras asimétricas. Esto se ilustra con dos pares de polímeros: polipropileno vs. poliisobutileno y poli (cloruro de vinilo) vs. poli (cloruro de vinilideno). Dada nuestra discusión sobre la rigidez de la cadena anterior, se esperaría que grupos adicionales cerca del esqueleto para el polímero simétrico mejorarían el impedimento estérico y, en consecuencia, aumentarían la Tg. Esto, sin embargo, no es el caso. Esta "discrepancia" se debe a requisitos conformacionales. Los grupos adicionales solo se pueden organizar en una conformación con una estructura "libre". El aumento en el volumen libre conduce a una Tg más baja. Otro factor geométrico que influye en Tg es la configuración cis-trans. Los dobles enlaces en la forma cis reducen la barrera de energía para la rotación de los enlaces adyacentes, "suavizan" la cadena y, por lo tanto, reducen la Tg.
Fuerzas atractivas intermoleculares
Recordamos de nuestra discusión previa que el enlace intermolecular en los polímeros se debe a fuerzas de atracción secundarias. En consecuencia, es previsible que la presencia de fuertes enlaces intermoleculares en una cadena polimérica, es decir, un alto valor de densidad de energía cohesiva, aumente significativamente la Tg. Los efectos estéricos de los grupos colgantes en serie (CH3, –Cl y –CN) son similares, pero la polaridad aumenta. El mismo efecto de aumentar la Tg con el aumento de CED se puede observar si consideramos la transición de las fuerzas intermoleculares en poli (acrilato de metilo), un éster, a través de fuertes enlaces de inpolia de hidrógeno (ácido acrílico) a enlaces iónicos primarios en poli (acrilato de zinc). Todavía recordamos que las fuerzas de enlace secundarias son efectivas solo en distancias moleculares cortas. Por lo tanto, cualquier característica estructural que tiende a aumentar la distancia entre las cadenas de polímero disminuye la densidad de la energía cohesiva y, por lo tanto, reduce la Tg. Este efecto ya se ha demostrado claramente en la serie de poliacrilato en la que la mayor distancia entre las cadenas debido al tamaño del grupo alquilo, R, ha reducido la Tg.
Factores que influyen en la Tg
Reticulación: A medida que aumenta la reticulación, finalmente se alcanza la etapa en la que la Tg es indetectable debido a la restricción del movimiento segmentario ocasionada por las reticulaciones. A niveles bajos e intermedios de reticulación, Tg se desplaza a temperaturas más altas y la meseta gomosa se produce a valores de módulo más altos.
Copolímeros y mezclas de polímeros: Los copolímeros generalmente exhiben un solo valor de Tg que se encuentra en una posición intermedia con respecto a la Tgs de los homopolímeros constituyentes. Se han desarrollado varias relaciones, incluidas las siguientes, para predecir los valores de Tg del copolímero. En copolímeros de bloque, donde los bloques son lo suficientemente grandes para la fase. separados, se evidencian dos transiciones de vidrio. Si la separación de fases es completa, las Tgs se encuentran a las temperaturas de los correspondientes homopolímeros. Si en el caso relativamente improbable de que los bloques de tal copolímero sean miscibles, entonces se obtiene una única Tg. Nuevamente, estará en una posición intermedia gobernada por las cantidades relativas de los bloques constituyentes. Para mezclas de polímeros inmiscibles, resultan dos Tgs y se ubican en las Tgs de los polímeros constituyentes. Si, por el contrario, el par de polímeros constituyentes son miscibles, como en el caso del copolímero de bloques, solo habrá una única Tg. Si hay algún grado de mezcla de los polímeros constituyentes, entonces las Tgs se desplazan hacia adentro entre sí en relación con los valores del polímero constituyente.
Cristalinidad: las regiones amorfas de los polímeros semicristalinos también exhiben una transición vítrea que puede verse influenciada si los cristalitos restringen hasta cierto punto la libertad de movimiento segmentario. Muchos polímeros semicristalinos parecen tener dos Tgs. El inferior está asociado con segmentos de cadena amorfa completamente irrestrictos y el otro con segmentos cuyos movimientos están en cierta medida restringidos por elementos cristalinos.
Polaridad: las interacciones polares, como los enlaces de hidrógeno y las interacciones dipolo-dipolo, elevan la Tg porque deben superarse antes de que los segmentos estén libres para rotar hacia nuevas conformaciones.
Grupos laterales: Los efectos de los grupos laterales unidos a la columna vertebral de la cadena difieren dependiendo de si los grupos laterales son flexibles o rígidos. La flexibilidad se refiere a la facilidad de rotación que es posible sobre los enlaces esqueléticos de los grupos laterales. Esto controla las conformaciones disponibles para estos grupos laterales. A medida que aumenta la flexibilidad de la cadena lateral, la Tg disminuye. Se cree que los grupos laterales actúan como diluyentes internos, reduciendo así las interacciones de fricción entre cadenas. Para los grupos de lados rígidos, hay posibilidades muy limitadas de cambio conformacional a través de la rotación del enlace esquelético. Estos grupos laterales también pueden considerarse voluminosos. Su influencia es aumentar el valor de Tg. g) Tacticidad: El efecto de la tacticidad sobre Tg puede en algunos casos ser sustancial. Karasz y MacKnight5 han ilustrado este punto para los polimetacrilatos. Por ejemplo, informan que la Tg del metacrilato de polimetilo isotáctico es de 43°C e, mientras que un valor para el metacrilato de polimetilo sindiotáctico dominante fue de 105°C.
Influencia de la presión en la transición del vidrio: Como el contenido de volumen libre de un polímero influye fuertemente en la Tg, un aumento de presión provoca un aumento en la Tg. Al pasar de la presión atmosférica a, digamos, 3000 bares, puede resultar fácilmente en un aumento de la Tg de 20 a 30°C.
Relaciones de estructura de propiedad
La temperatura de transición vítrea aumenta con la presencia de:
- grupos colgantes voluminosos
- grupos de refuerzo tales como 1,4-fenileno
- simetría de cadena
- grupos polares
- reticulación
La temperatura de transición vítrea disminuye con la presencia de:
- aditivos como plastificantes
- principales grupos de cadenas flexibles
- grupos no polares
- disimetría
Normas ; ISO 11357, ASTM E793, ASTM D3895, ASTM D3417, ASTM D3418, DIN 51004, DIN 51007
Determinación de Tg mediante Análisis Mecánico Dinámico
Los métodos mecánicos dinámicos son populares entre los analistas térmicos para medir propiedades termomecánicas. La identificación de la transición vítrea y cómo las diversas modificaciones del sistema afectan a la Tg es una aplicación importante para DMA. Generalmente, la transición vítrea se identifica fácilmente a partir de datos mecánicos dinámicos debido a la fuerte disminución en el módulo de almacenamiento E (o módulo de almacenamiento de corte G), y la correspondiente dispersión de pérdida en E (pérdida de corte G) o tan δ que ocurren en Tg. Estos datos son para un polímero amorfo típico. Es evidente que existe un margen de maniobra en la forma en que se elige el valor exacto de Tg de un conjunto de datos dinámicos, y esto a menudo genera confusión en la literatura. El criterio para la selección de Tg a partir de los datos de DMA suele ser el pico en el módulo de pérdida E o el pico en tan δ. Si bien el pico tan δ se usa a menudo en la literatura, el valor de Tg obtenido es varios grados más alto que el pico E. El pico de tan δ corresponde más de cerca al punto medio de transición de la curva de log E decreciente, mientras que el pico del módulo de pérdida denota más de cerca la caída inicial del estado vítreo a la transición. A este respecto, el valor de Tg pico de E está generalmente cerca de la intersección de las dos tangentes a la curva del módulo de almacenamiento de logaritmos que se origina tanto en la región vítrea como en la región de transición, la denominada temperatura de "inicio". En general, el módulo de pérdida máximo es el valor más apropiado. Este es el método prescrito por ASTM D4065. Es un criterio razonable desde un punto de vista práctico porque la temperatura de uso superior de muchos polímeros amorfos es el punto de "ablandamiento". Está claro que en el punto medio de transición (pico tan δ) se ha excedido el punto de reblandecimiento. Para la mayoría de los polímeros amorfos lineales, la región de transición es bastante estrecha, cubriendo alrededor de 15°C. En estos casos, la distinción entre el pico E y tan δ no es sustancial. Hay casos tales como en polímeros cristalinos o termoestables reticulados donde la región Tg es ancha y ni el pico E ni tan δ pueden ser apropiados. También en el caso de polímeros altamente cristalinos y polímeros reticulados, la Tg es un evento menos prominente y puede ser difícil de observar porque la dispersión de la pérdida no es distinta. Estos datos se analizarán con más detalle en una sección posterior. Sin embargo, en general, la transición vítrea en polímeros cristalinos y reticulados puede observarse más claramente en DMA que en DSC, porque la desviación de la línea base (E) en Tg es mucho mayor que el Cp medido en DSC. El cambio de módulo en Tg suele ser del orden de 10 a 10e3, mientras que el cambio de Cp será del orden de 10-30%.