Tg Temperatura de Transición vítrea
Laboratorio > ► Ensayos Termicos
Temperatura de Transición vítrea (Tg)
La transición vítrea, Tg, es la transición térmica más importante que muestran los polímeros amorfos. Como la transición vítrea es un fenómeno del estado no cristalino, se deduce que es un evento menos dramático en los polímeros semicristalinos. Antes de que se pueda seleccionar un polímero amorfo, o incluso semicristalino, para una tarea particular, es esencial conocer la temperatura de transición vítrea, ya que el cambio de módulo en la región de Tg es comúnmente de aproximadamente tres órdenes de magnitud. A temperaturas por debajo de la Tg, el polímero está en su estado vítreo. Aquí las cadenas están en conformaciones esencialmente congeladas. Puede haber algunos movimientos localizados, pero no hay un movimiento segmentario concertado a gran escala porque la rotación alrededor de los enlaces de la columna vertebral está muy restringida. En los polímeros, los enlaces intramoleculares se deben a enlaces de valencia primarios (covalentes) mientras que las atracciones intermoleculares generalmente se deben a fuerzas de enlace secundarias. Las fuerzas intermoleculares se oponen a la agitación térmica, que induce vibración, rotación y traslación de un sistema molecular. Existen vibraciones atómicas en todos los niveles de temperatura. La estabilidad del sistema molecular depende de la energía de vibración de los enlaces químicos. En los polímeros, la degradación térmica ocurre cuando la energía de la vibración excede la unión primaria entre los átomos, mientras que los fenómenos de transición asociados con el punto de fusión cristalino, la temperatura de transición vítrea y las deformaciones del polímero están relacionadas con la rotación y la vibración de las cadenas moleculares.
¿Qué significa Tg?
Se define como la temperatura a la cual el polímero o elastomero adquiere propiedades características de estado vítreo como fragilidad , rigidez y rigidez (al enfriarse). Esta temperatura (medida en °C) depende de la estructura química del polímero y por lo tanto, puede usarse para identificar polímero o elastomero. Es la temperatura en el cual un polímero cambia de un estado rígido y quebradizo a otro blando y maleable, está presente sólo en polímeros amorfos y es diferente para cada polímero, este la temperatura de transición se conoce como temperatura de la transición vítrea (Tg). La transición vítrea es una propiedad típica de la porción amorfa de un sólido semicristalino. Los polímeros amorfos solo exhiben una Tg, los polímeros cristalinos exhiben una Tm (temperatura de fusión) y típicamente una Tg ya que generalmente también hay una porción amorfa (semi-cristalinas). El valor de Tg depende de la movilidad de la cadena de polímero.
La transición del vidrio al estado similar al caucho es una característica importante del comportamiento del polímero o elastomero, que marca una región de cambios dramáticos en las propiedades físicas, como la dureza y la elasticidad. En Tg, se observan principalmente cambios en la dureza, el volumen, el porcentaje de alargamiento para romperse y el módulo de sólidos de Young. Algunos polímeros se usan por debajo de su Tg (en estado vítreo) como el poliestireno, el poli (metacrilato de metilo), etc., que son duros y quebradizos. Sus Tgs son más altas que la temperatura ambiente. Mientre algunos polímeros se utilizan por encima de su Tg (en estado gomoso), por ejemplo, elastómeros de caucho como el poliisopreno, el poliisobutileno. Son suaves y flexibles en la naturaleza; sus Tg son inferiores a la temperatura ambiente.
A bajas temperaturas, las regiones en las que el polímero es amorfo se encuentran en estado vítreo y las moléculas tienen poca movilidad ya que el único movimiento permitido es un movimiento vibratorio débil y, por lo tanto, el polímero es duro, rígido y frágil. Si el polímero se calienta, cuando alcanza la temperatura de transición vítrea, las moléculas pueden comenzar a moverse y, por lo tanto, el polímero está gomoso y muestra suavidad y flexibilidad. Las transiciones deben considerarse como el efecto de la excitación, debido al aumento de la temperatura, de los movimientos vibratorios o rotacionales de los átomos, grupos atómicos y segmentos de cadena.
La información más importante que proporciona la Tg
El estado normal de la mayoría de los polímeros termoestables es ser un sólido amorfo a temperatura ambiente. La disposición de las moléculas de polímero es una disposición aleatoria, lo que significa que la estructura del polímero no tiene una disposición repetitiva de cadenas de polímero. Un sólido amorfo es diferente de un sólido cristalino donde las moléculas de polímero estarían en una disposición estructurada y repetitiva. A temperaturas inferiores a la Tg, las cadenas moleculares no tienen suficiente energía presente para permitirles moverse. Las moléculas de polímero están esencialmente bloqueadas en una estructura amorfa rígida debido a la corta longitud de la cadena, a los grupos moleculares que se ramifican fuera de la cadena y se entrelazan entre sí, o debido a una estructura rígida del esqueleto. Cuando se aplica calor, las moléculas de polímero ganan algo de energía y pueden comenzar a moverse. En algún momento, la energía térmica es suficiente para cambiar la estructura rígida amorfa a una estructura flexible. Las moléculas de polímero se mueven libremente una alrededor de la otra. Este punto de transición se llama temperatura de transición vítrea.
La Tg se acompaña de un cambio en la capacidad calorífica del material. El polímero no se funde (a diferencia de un polímero cristalino que se fundirá cuando se aplica calor), pero experimenta un cambio en la estructura (de rígido a flexible) que produce un cambio en la capacidad calorífica del material.
Tg / Tm ≅ 1/2 para polímeros simétricos (por ejemplo, cloruro de poliviniliden - PDVC)
Tg / Tm ≅ 2/3 para polímeros no simétricos (por ejemplo, polipropileno - PP)
Elastómeros completamente amorfos con baja Tg (Tg ≤ - 40 ÷ 50°C), termoplásticos semicristalinos o amorfos con Tg ≅ -10 ÷ 120°C y Tm = 120 ÷ 260°C y finalmente la urea-melamina, fenol termoendurecible. formaldehído completamente amorfo.
Determinación de la transición del vidrio
Según las propiedades de los polímeros. especialmente los polímeros amorfos, cambian drásticamente en la región de transición, hay muchas formas de determinar la Tg experimentalmente basándose en cambios en las propiedades termodinámicas, físicas, mecánicas o eléctricas en función de la temperatura.
a) Dilatometría: en este método se construye una gráfica de volumen específico versus temperatura. Hay un cambio de pendiente en la transición vítrea.
b) Métodos térmicos: el método principal aquí es la calorimetría diferencial de barrido, DSC. La técnica es sensible a las transiciones exotérmicas y endotérmicas y a los cambios en la capacidad calorífica, como ocurre en la transición vítrea. Se ha demostrado que una modificación reciente de DSC, calorimetría de barrido diferencial de temperatura modulada, M-TDSC, es mucho más sensible a la transición vítrea que la DSC convencional.
c) Técnicas mecánicas: además del módulo, otras propiedades relacionadas como la dureza y el coeficiente de restitución pueden formar la base de las técnicas de detección de Tg. Sin embargo, el análisis térmico mecánico dinámico, DMTA, es con mucho la técnica más importante en esta categoría. Se aplica un desplazamiento periódico a la probeta. Las ondas de tensión y deformación periódicas resultantes se pueden analizar para obtener el módulo de almacenamiento dinámico (una medida de la energía almacenada por ciclo), el módulo de pérdida dinámica (una medida de la energía disipada como calor por ciclo) y la tangente de la salida ángulo de fase, tan delta. Esta es una técnica conveniente, de amplia aplicación y sensible para la detección de Tg. Debido a la naturaleza viscoelástica de los polímeros en la región de transición vítrea, los cambios en la frecuencia del experimento darán como resultado un cambio de la posición de Tg.
La naturaleza química de un polímero es la responsable principal de los cambios en Tg. La humedad, peso molecular y estructura son algunos de los tantos factores a considerar en este rango de análisis. La simetría en las unidades respectivas favorecen el aumento de rigidez a temperaturas menores a Tg, por otra parte los materiales asimétricos o desordenados (con un alto contenido de enlaces polares) tienden a reblandecerse a temperaturas más altas de Tg.
El uso de un polímero por encima de su Tg depende de las propiedades que se necesitan para el polímero. Una silicona flexible o epoxi tiene su Tg por debajo de 0°C. Se puede usar a temperatura ambiente y superior porque la propiedad deseada es flexibilidad y elasticidad. Por encima de la Tg, el polímero está en estado gomoso. Para una silicona flexible o epoxi, es decir si se usa como sellador o adhesivo flexible, la capacidad de moverse a medida que se aplican tensiones es una característica clave que solo se logra si la temperatura de servicio es superior a la Tg.
Es posible que otro polímero necesite tener propiedades físicas fuertes cuando se usa a una temperatura elevada. Para este polímero, la temperatura de servicio debe estar por debajo de la Tg. Este polímero se encuentra en estado rígido y vítreo cuando se usa a una temperatura inferior a la Tg. Esto significa que el polímero tiene una alta resistencia en áreas tales como compresión, tensión, cizallamiento, etc.
Teorías de la temperatura de transición del vidrio
La naturaleza fundamental de la transición vítrea aún no está clara. Es un proceso complejo que involucra factores de equilibrio, termodinámicos y cinéticos. Las diversas teorías de la transición vítrea, sin embargo, han utilizado el enfoque termodinámico o cinético. El enfoque termodinámico se basa en consideraciones de entropía del estado vítreo, mientras que la teoría cinética de la transición vítrea considera los fenómenos de relajación asociados con la transición vítrea. Cada enfoque solo da una explicación parcial del comportamiento observado de los polímeros. Ahora discutimos brevemente estas teorías junto con la teoría del volumen libre.
Relación estructura-temperatura de transición vítrea
Teoría cinética
El concepto cinético de transición vítrea considera la transición vítrea como un fenómeno dinámico ya que la posición de la Tg depende de la velocidad de calentamiento o enfriamiento. Predice que el valor de Tg medido depende de la escala de tiempo del experimento en relación con el de los movimientos moleculares que surgen de la perturbación del sistema polimérico por los cambios de temperatura. Se han propuesto varios modelos para correlacionar estos movimientos moleculares con cambios en las propiedades macroscópicas observadas en el experimento.
Un enfoque considera el proceso de vitrificación (glassification) como una reacción que implica el movimiento de segmentos de cadena (unidades cinéticas) entre estados de energía. Para que ocurra el movimiento de un segmento de cadena de un estado de energía a otro, debe estar disponible un "agujero" crítico o un espacio vacío. Para crear este agujero, debe haber suficiente energía disponible para superar las fuerzas cohesivas de las moléculas circundantes y la barrera de energía potencial asociada con la reorganización. La temperatura a la que el número de agujeros de tamaño suficiente es lo suficientemente grande como para permitir que el flujo se considere como la Tg. Esta teoría permite una descripción del enfoque del equilibrio termodinámico. Cuando un material polimérico por encima de Tg es enfriado, hay suficiente movimiento molecular para lograr el equilibrio. Sin embargo, la velocidad de aproximación al equilibrio, y por lo tanto la Tg, depende de la velocidad de enfriamiento empleada en el experimento.